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Freshwater shorelines, including adjacent riparian habitats, are dynamic intersections between land 
and water that contribute to the maintenance of biodiversity in both realms. These areas are also affected 
by multiple stressors at local and global scales, from development to climate impacts. Despite increasing 
alterations to these areas, often to the detriment of connected ecosystems, and despite many regulations 
for residential and commercial development, there are no established thresholds across countries and 
governance levels for how much shoreline or riparian development is too much to maintain freshwater 
ecosystem function. The urgent need to identify thresholds for shoreline and riparian development in 
freshwater systems is complicated by a number of challenges, yet there is evidence that threshold effects 
occur after only a small area of a watershed is developed. Here, we summarize current information on 
development thresholds for shoreline and riparian areas of freshwater systems. We then discuss the inherent 
challenges in assigning numeric values to such a diverse set of ecosystems (spanning wetlands, lakes, 
streams, and more), including considerations such as temporal lags, spatial scales, and cumulative effects. 
We conclude with a call for research needed to overcome knowledge gaps that will enable practitioners to 
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Why do we need thresholds for 
development in shoreline and 
riparian areas of freshwater 
systems?

Shorelines are part of the shoreland ecosystem, 
which includes upland, riparian, and littoral zones 
(Dennison, 2022). Shorelines and their riparian 
zones are the interface between distinct but coupled 
terrestrial and freshwater environments: both 
provide habitat for a variety of land- and water- 
based species and they regulate and maintain the 
physical, chemical and biological conditions of 
the systems (Schindler and Scheuerell, 2002; Riis 
et al., 2020; Cooke et al., 2022a), with estimates 
suggesting at least 70% of vertebrates use riparian 
habitats at some point in their life (as cited in 
Naiman et al., 1993). Shoreline riparian areas are 
also popular for human development due to their 
aesthetic, recreational, and economic value. While 
intact riparian zones foster climate resiliency 
(Cooke et al 2022a), the alteration of near-shore 
physical habitat often has negative effects on 
freshwater ecosystems (Lyche Solheim et al., 
2013; Teurlincx et al., 2019). For example, riparian 
alteration affects channel morphology and flow 
regimes (Del Tánago et al., 2021; Henriques et al., 
2022), reduces habitat heterogeneity for terrestrial 
and aquatic species (Kaufmann et al., 2014; Figure 
1), and changes the processes of erosion, filtration, 
infiltration, noise and light pollution, channel 
movement, shading, and subsidies (Fisheries and 
Oceans Canada, 2020). Property owner decisions 
about altering shorelines are complex (Scyphers 
et al., 2015), and though education about the 
benefits of natural shorelines may help reduce site-
specific alterations, regulatory restrictions are also 
important, particularly for managing larger-scale 
impacts (Norton et al., 2022). Currently, regulators 
responsible for managing shoreline development 
have little information available to judge how 
much development critically impairs ecosystem 

function. Even so, determining when thresholds for 
ecosystem health have been reached was identified 
as the most important topic for freshwater fish 
habitat management in Canada (Dey et al., 2021). 
Identifying thresholds will only become more 
important as effects from climate change become 
more severe (e.g. Lawrence at al., 2014).

There are many regulations for residential 
and commercial development, but few for 
riparian or shoreline alterations across countries 
and governance levels. In regions with robust 
governance structure, permits for development 
are typically issued on a project-by-project basis, 
but policies that restrict the cumulative number of 
approved projects in any given area, or guidelines 
that establish appropriate spatial-temporal scales 
for consideration, are often lacking. For example, 
in Canada, cumulative effects were only mandated 
to be considered in 2019 under the Fisheries Act, 
and so the science to support this policy in practice 
is still being developed (Department of Fisheries 
and Oceans (DFO), 2022). Furthermore, in some 
jurisdictions/countries there are few environmental 
regulations or, more commonly, enforcement 
is lacking. We submit that there is dire need to 
establish thresholds for cumulative shoreline 
and riparian development in freshwater systems 
to guide management activities (Jennings et al., 
2003; Kelly et al., 2015). First, we summarize 
examples of development thresholds (i.e. when 
small changes produce a non-linear – often large 
– response in an ecosystem component; Samhouri 
et al., 2010) and how these can lead to ecosystem-
level responses. Next, we acknowledge that there 
are inherent challenges with developing such 
guidance (e.g. Johnson, 2013; Spake et al., 2022), 
and finally we discuss the challenges in their 
application. We conclude with a call for research 
needed to overcome knowledge gaps that will 
enable practitioners to apply scientifically-robust 
thresholds to decisions regarding shoreline and 
riparian development in freshwater systems. Our 
team includes researchers with diverse expertise 

apply scientifically-robust thresholds to decisions regarding shoreline and riparian development. Doing 
so will benefit all actors by providing evidence to support shoreline policies and development guidelines 
that are inclusive of the aesthetic, recreational, and functional aspects of freshwater systems.

Keywords: cumulative effects, ecosystem, management, regulation, tipping point
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Fig. 1 The relationship between shoreline development and ecological response in a system with a threshold. At low and mid 
development, (top and middle panel) individual landowner development (represented by the star) reflects the system response 
(represented by the solid line). As development by individual landowners increases, (bottom panel) there is a point where the linear 
ecological response hits a threshold and a larger response occurs. Regardless of whether a few landowners do a lot of development 
or many landowners do small changes, each landowner has abided by regulations, yet the overall cumulative effects are larger than 
predicted from these individual effects. This may or may not also represent a tipping point in the system.
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in freshwater science and management, as well as 
practitioners and regulators that deal with permit 
requests. Although we attempt to be global in our 
thinking, we acknowledge that we are all based 
in Ontario, Canada and are more familiar with 
the regulatory framework and management needs 
in North America. Nonetheless, we are confident 
that these issues are germane to freshwater systems 
around the globe.

What is shoreland development?
Here we consider three categories of freshwater 

shoreland development: 1) shoreline armoring 
(hard structures preventing erosion)—structures 
made from sheet piling, concrete, riprap, gabions, 
boulders, and wood; 2) shoreline alterations 
(infrastructure in contact with water)—boat 
ramps, docks, boat houses, and other infrastructure 
(such as stormwater or tile outlets); and 3) 
riparian alterations (changes on land)—ranging 
from cosmetic landscaping such as terrestrial 
vegetation removal, lawn and garden features, 
and beach creation, to forestry and agriculture. 
These categories are often linked as changes in one 
can create conditions where landowners pursue 
additional modifications (e.g. removing terrestrial 
vegetation leads to shoreline armoring). All of 
these forms of development result in physical 
changes that alter local chemical and biological 
conditions including: 1) habitat quantity including 
connectivity; 2) habitat quality via structure or 
cover simplification or establishment of aquatic 
invasive species; 3) water flow and level dynamics 
(e.g. surface runoff, groundwater connectivity, 
current diversion); 4) shoreline slope and bank 
instability and erosion; and 5) nearshore water 
quality via contaminated run-off (e.g. sediments, 
nutrients, pesticides) and increased temperature and 
oxygen demand (reviewed in Fisheries and Oceans 
Canada, 2020; Brownscombe and Smokorowski, 
2021).

For example, shoreline armoring can alter 
plant, invertebrate, and fish communities and their 
foodwebs (Doi et al., 2010; Wensink and Tiegs, 
2016; Chhor et al., 2020), and armoring generally 
has a negative effect in soft sediment environments 
(Dugan et al., 2018). Shoreline alterations can 
affect vegetation (Sagerman et al., 2020) and fish 
(Dustin and Vondracek, 2017) communities, and 

fish behaviour through boat noise (Pieniazek et 
al., 2020; Fleissner et al., 2022). Alterations to 
riparian habitat reduces large woody material 
(LWM) (Pearce et al., 2022) which is also often 
removed by property owners for aesthetic reasons 
(Piegay et al., 2005; Le Lay et al., 2008) causing 
it to be negatively correlated with development at 
the lake scale (Christensen et al., 1996; Jennings 
et al., 2003; Wehrly et al., 2012). LWM serves as a 
refuge, food source, and spawning habitat for fish 
(Trial et al., 2001; Smokorowski and Pratt, 2007), 
increases fish community diversity (Talmage et 
al., 2002), and is also one of the substrates used 
by periphyton, which are the main food of primary 
consumers and thus the foodweb (Vander Zanden 
and Vadeboncoeur, 2020).

In general, shoreland development has many 
other negative linear effects, a sampling of which 
include a lower diversity of food items and con-
sumers that reduces trophic links (Rosenberger 
et al., 2008; Francis and Schindler, 2009; Brauns 
et al., 2011); fewer frogs (Woodford and Meyer, 
2003); less diverse plankton and macroinvertebrate 
communities (Smith and Kirkwood, 2022); and 
fewer nesting fish (Reed and Pereira 2009) with 
altered behaviour (Foster et al., 2016) and commu-
nity structure (Smokorowski and Pratt, 2007).

What do we know about 
development thresholds?

We define thresholds as a breakpoint where a 
larger (non-linear) ecological response occurs in 
one or several components of the system. In some 
definitions, a threshold is simply a stopping point 
along a linear progression of the cumulative impacts 
of multiple activities (Johnson and Ray, 2021). 
When single (or multiple) ecological components 
exceed a particular value (whether linear or non-
linear), this may or may not result in a tipping point 
(where the system moves from one stable state 
into another) (Kim et al., 2020). Regime shifts and 
multiple stable states can occur in a wide range of 
systems (Schroder et al., 2005; but see Hillebrand 
et al., 2020) resulting in a new system that is 
often degraded and harder to recover. All these 
responses can occur simultaneously. For example, 
riparian development can create tipping points for 
primary production (e.g. shifts from macrophyte 
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dominance to algal dominance) (Scheffer and 
Carpenter, 2003), but have a threshold with respect 
to benthic invertebrates (above which a larger 
decline happens) (Burdon et al., 2013), and a linear 
response with respect to amphibians (a constant 
decline) (Woodford and Meyer, 2003).

There are few examples of non-linear threshold 
effects related to water quality or habitat conditions 
in freshwater systems. Forage fish density 
increased above a threshold of 5 large trees per 30 
m shoreline (Brown, 1998). At the watershed scale, 
>3% impervious (hard surface) cover decreased 
macroinvertebrate richness in streams (Maloney 
et al., 2012), and in Canada, it is recommended 
that watersheds have <10% impervious cover as 
many components of stream health (fish, plants, 
amphibians, water quality) become more degraded 
past that level (Environment Canada, 2013). In 
wetlands, >10% development affected multiple 
taxa (Kovalenko et al., 2014), though another study 
found threshold effects in wetlands were driven by 
their hydraulic regime (Larsen and Alp, 2015). In 
small Brazilian streams, the threshold of vegetation 
loss where fishes and invertebrates were affected 
varied with stream size (Dala-Corte et al., 2020), 
and 1-3 kilometers (km) of riparian deforestation (3-
20% of watershed area) affected fish assemblages 
in Appalachian streams (Jones III et al., 1999). In 
estuarine communities, urban development greater 
than 3.5-3.7% of the watershed area showed a 
threshold negative effect on waterbird community 
integrity (DeLuca et al., 2008), and submerged 
aquatic vegetation increased over time in sub-
estuaries with <5.4% riprap, but not in areas with 
>5.4% riprap (Patrick et al., 2014).

Costs can also have thresholds. Establishing 
conservation networks for wetlands prior to 
development was less costly and resulted in less 
fragmented networks than trying to establish these 
areas after natural resource extraction had begun, 
especially after the developed area reached a 
threshold of 11% (Cimon-Morin et al., 2016).

On the challenges with identifying 
thresholds

Challenge 1: Classifying development

Determining how to classify different forms 

of development is remarkably challenging. For 
example, in the inland lakes of Ontario, shoreline 
development is defined as the total number of units 
(permanent residences, cottages, resorts, trailer 
parks, campgrounds and camps, and the conversion 
of forests to agricultural or urban land) within 300 
m of the lake or its inflowing stream (Ministry of the 
Environment, Conservation, and Parks (MOECP), 
2019). Some authors use a simple classification 
by number of houses (defined as buildings with 
lakefront access or within 10 m of shore) into 
undeveloped (0 houses km-1), low density (1-10 
houses km-1), and high density (>10 houses km-1) 
categories (e.g. Christensen et al., 1996; Francis 
and Schindler, 2009; Wehrly et al., 2012). However, 
does number of units really account for all the 
changes that development brings? Development 
can lead to pesticide and herbicide use, impervious 
surfaces like buildings and new roads, concentrated 
pet waste, wildlife harassment, septic systems, 
car tire pollutants, light and noise pollution, boat 
traffic, human disturbance, etc., that all vary among 
individual dwellings. Other methods of measuring 
development include quantifying human activities 
through energy use (electricity, fuels, fertilizers, 
pesticides, and water) per unit area per unit time 
(Brown and Vivas, 2005). Should each individual 
aspect of development have its own limits, or 
is housing density a sufficient metric for setting 
threshold effects of development?

Challenge 2: Scale

Matching the spatial and temporal scale of 
development with their effects is challenging. Both 
can be measured at a watershed, lake-wide, or 
river-reach basis, or a more local scale (e.g. Wehrly 
et al., 2012) and the future position of the shoreline 
may change due to wind, waves, and currents (e.g. 
Tomasicchio et al., 2020). Development can have 
effects at relatively small linear scales (e.g. 500m: 
Brauns et al., 2011) and at very large scales (i.e. 
the Laurentian Great Lakes: Meadows et al., 2005). 
Moreover, how does scale play out when one 
considers more mobile organisms (e.g. fish) versus 
more sedentary organisms (e.g. rooted plants), or 
ones that have life cycles that require terrestrial 
habitats across seasons (e.g. turtles, insects)? Does 
the spacing of development matter? For example, 
does it matter if the development is all at one 
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end of the lake versus dispersed around the lake? 
What is the density or spacing of docks that alter 
fish movement or space use? How do you assess 
if riparian habitats for egg laying are connected 
enough to natural shorelines to access those 
habitats for turtles? Are armoring and alteration 
equally detrimental, do they occur equally as often, 
and how often does development or other stressors 
have synergistic effects (Craig et al., 2017)? What 
is the lag between a shoreline change now and a 
community or ecosystem response at some time in 
the future or at another location? How are continued 
disturbances considered, such as boat traffic once 
a dock is in place? Development may have short 
(e.g. high sedimentation during building phase) 
and long-term (e.g. changed flow, temperature, 
nutrient inputs) impacts. As such, how often are 
both considered? How do we meaningfully include 
cumulative effects in the face of such lags? These 
are but a few of the many questions that exist that 
are relevant to scale.

Challenge 3: Regulations

In North America, housing development is 
now generally restricted to a minimum 30 m (100 
ft) set-back from the high-water mark, but older 
shoreline developments are situated much closer 
depending on jurisdiction (e.g. many places have 
grandfathered regulations that allow boathouse 
structures at the shoreline: Collison and Gromack 
2022) and selective timber harvest is often 
regulated and allowed (Lee et al. 2004). Activities 
within that restricted space – such as armoring 
(hard structures) and alteration (infrastructure and 
riparian zones) discussed here – may be regulated 
or simply have best management practices (BMPs), 
which may vary depending on land ownership 
(government or private) and level of jurisdiction 
under consideration. Generally, BMPs recommend 
a 15-30 m ecological buffer/vegetation protection 
zone, though this is for mitigating water quality 
impacts, not for protecting wildlife habitat (Niagara 
Peninsula Conservation Authority (NPCA), 2022). 
Riparian zone buffers were originally designed to 
protect aquatic components by reducing nitrogen 
runoff from land-use practices (Mayer et al., 2006). 
Riparian widths to protect aquatic components vary 
depending on their goal, with 10-30 m a minimum to 
protect physical and chemical attributes of a stream, 

10-50 m for invertebrate diversity, 15-100 m for 
fish and fish habitat, and 30-100 m for large woody 
material supply (Broadmeadow and Nisbet 2004; 
Collison and Gromack 2022). There is less research 
on buffer width necessary to protect terrestrial 
components (the native trees and shrubs and their 
associated mammals, birds, and amphibians) (Lee 
et al., 2004) and in general buffers needed to protect 
terrestrial components (100 m) are wider than 
those for aquatic components (10-30 m) (Wenger 
1999). However, the minimal existing science on 
buffer width effectiveness shows vastly different 
buffer size depending on focal taxa and impact, 
ranging from 8 m for water quality protection 
from herbicides to 1 km for habitat necessary for 
turtles (reviewed in NPCA, 2022). Though buffers 
tailor-made for each situation may provide more 
defensible criteria, this increases complexity, as up 
to 14 modifying factors have been identified (such 
as the waterbody slope, size, and type, and presence 
of fish) (Lee et al., 2004) and so others have 
suggested fixed-width buffers are clearer and more 
enforceable (Wenger and Fowler, 2000). Without 
clear, legally enforceable rules, trained staff to 
conduct site visits to determine compliance, and 
centralized documentation of development such 
as in a registry, effects will continue to accumulate 
unnoticed.

Binding targets for healthy riparian areas are 
lacking in many areas. In Canada, a 30 m naturally 
vegetated riparian area is the government’s BMP 
for streams (Environment Canada, 2013) but there 
are no guidelines specific to lakes or headwater 
drainages. The United States’ requirement for 
the assessment of total maximum daily loads 
(nutrients, sediments, or other impairing factors) 
for water bodies implies riparian habitats be 
conserved (Environmental Law Centre, 2021) but 
buffer width regulation in some US states is still 
lacking (Mayer et al., 2006). There is also a lack 
of data for most lakes, especially shallow warm 
water lakes, and so stream-based guidelines are 
applied to manage their development. In situations 
where lakes have a much smaller ratio of land-to-
water interface, for example in large lakes or lakes 
with large contributing watersheds, the scientific 
defensibility of applying stream-based guidelines 
becomes a challenge.

How do we balance socioeconomic 
considerations with ecological thresholds? It may 
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not be possible to apply as strict a threshold as would 
be ecologically ideal because of competing needs 
in multi-stakeholder landscapes. For example, in 
some places, riparian widths are up to the discretion 
of municipalities where they may be less than 30 
m ‘for political reasons’ (Model Riparian Buffer 
Protection, 2016). If shorelines are developed, 
the requirement of offsets to counterbalance the 
negative effects on fish and fish habitat may be 
invoked (e.g. in Canada: Government of Canada, 
2021). Though this approach may be beneficial, the 
offsetting measures are determined on a case-by-
case basis and have inherent challenges (Coker et 
al., 2018; Theis et al., 2020; Price et al., 2022; Theis 
et al., 2022), and riparian connectivity is rarely 
considered (Environmental Law Centre, 2021).

On the challenges with applying 
thresholds

Challenge 1: Political and public buy-in

Threshold development points should help 
guide policy and set standards (Hunter et al., 2009; 
Kelly et al., 2015), such as supporting the goal 
of the Canadian federal Fisheries Act to offset or 
counterbalance the harmful alteration, disruption 
or destruction (HADD) of fish habitat. This would 
only work in practice if there was a clear scientific 
basis for the threshold value (or the tipping point, 
or the maximum allowable cumulative effect) 
above which no more shoreline development could 
take place at the individual/lake/reach/watershed 
scale, so that regulators could say ‘no’ with more 
certainty. However, the outcome would be that 
property owner A can do their development, or that 
property owner B did a project last year, but owner 
C who was next in line cannot complete their project 
because the threshold value has now been crossed 
and no more development is allowed, a situation 
that owner C may find hard to understand. Ideally, 
with solid evidence demonstrating the benefits of 
such thresholds and clear information campaigns 
to educate landowners about local limits, greater 
landowner acceptance would result.

Models such as Ontario’s Lakeshore Capacity 
Model, designed for relating phosphorus loading 
to shoreline development, could perhaps be 
modified to include other stressors (Government of 

Ontario, 2010). These models should also deal with 
climate change and include new technologies that 
influence shoreline management (e.g. bubblers in 
winter that reduce ice cover; light pollution), and 
this type of flexibility may be especially important 
if thresholds are mandated by law. Regulators need 
tools and informed science to consider cumulative 
impacts at watershed scales (e.g. Meadows et al., 
2005; DFO, 2022). In the absence of this, shoreline 
development and degradation may represent 
death by a thousand cuts, or the tyranny of small 
decisions.

Challenge 2: Protection and risk

Protected areas (no development) that include 
the shoreline can have positive effects on habitat, 
fish, and songbirds (Nikolaus et al., 2022). Globally, 
one target is to protect 30% of land and water by 
2030 to protect biodiversity and mitigate climate 
change (Convention on Biological Diversity, 2021). 
Canadians support higher levels of protection 
(Wright et al., 2019) and resilient ecosystems 
provide more benefits especially in the face of 
climate change (Grantham et al., 2019). However, 
not all ecosystems are equally at risk, and some 
are more unique than others (Melles et al., 2014; 
Hansen et al., 2022). For example, by assessing five 
major biotic drivers of aquatic ecosystem integrity 
(energy sources, physical habitat, flow regime, 
water quality, and biotic interactions) we can use 
tools (e.g. Ecological Risk Index) to identify the 
watersheds at highest ecological risk due to human-
induced stressors (Mattson and Angermeier, 2007). 
Globally, there are calls to create a prioritization 
framework to identify degraded ecosystems (e.g. 
the IUCN Red List of Ecosystems: IUCN-CEM, 
2022), as by 2030 the Convention on Biological 
Diversity (2021) has the goal to restore 20% of 
degraded ecosystems with a focus on priority 
ecosystems.

Challenge 3: Landowner education and 
buy-in

Is the promotion of sound stewardship 
practices through landowner education and grant 
and tax incentives more effective than regulatory 
restrictions? Property owners often want things 
that are not compatible with a healthy watershed, 
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and misperceptions are common (Scyphers et al., 
2015). For example, natural or unaltered shorelines 
are paradoxically perceived by the public as being 
less durable and requiring more maintenance than 
vertical walls (Scyphers et al., 2015), and shoreline 
property owners often want one consistent water 
level. How do we convince property owners that 
water level fluctuations are important for healthy 
habitats? How do the actions of one property 
owner affect others? For example, homeowners 
may alter their shorelines in response to their 
neighbor’s shoreline activities as a form of social 
conformity (Goddard et al., 2013). However, 
shoreline alterations can also be made in response 
to scouring or erosion caused by a neighbor’s 
shoreline alterations (Scyphers et al., 2015). These 
issues can be perpetuated by contractors speaking 
to neighboring owners about the perceived benefits 
of armored solutions and the cost-saving if they do 
the work now while they are in the area. This can 
also be exacerbated by a lack of contractors trained 
in bioengineering solutions aimed at reducing 
ecological impacts. Eco-engineering solutions and 
living shorelines are being used more and more, 
though are currently focused mainly in coastal 
marine systems (e.g. Morris et al., 2018; Smith 
et al., 2020). However, the very nature of natural 
coastal variability that generates resiliency in these 
systems is often seen as a detriment compared to 
engineered structures that result in constancy and 
predictability but no other ecosystem services; the 
burden is then placed on those proposing these 
more natural approaches to show they actually 
work and are cost-effective. Still, the promotion of 
these ‘greener’ solutions may increase the desire 
for development by homeowners or its acceptance 
by regulators, possibly spurred by the assumption 
that better engineering solutions are a panacea for 
whatever is altered by development.

A call to action for identifying 
and applying thresholds in 
practice

The idea of ecological thresholds is appealing, as 
it implies there is a tangible, transparent, objective, 
consistent, and non-controversial decision-making 
process (Johnson and Ray, 2021). Yet there is a lack 
of general principles on how to determine which 
variables are reliable, measurable, and responsive 

on the appropriate timescales, and so would be 
appropriate as indicators across a wide range of 
systems. In some cases, indicator or umbrella 
species may be used as sentinels for threshold 
effects. Appropriate variables are crucial if we are 
to monitor systems to know when thresholds are 
being approached (Kelly et al., 2015), especially 
considering thresholds are context dependent (e.g. 
naturally oligotrophic vs. eutrophic systems) and 
have so far mainly been established in specific 
systems. We echo Spake et al.’s (2022) call for 
researchers to identify early-warning signals (e.g. 
increases in variance), for policy makers to be 
proactive instead of reactive (responding to early 
warnings instead of waiting for degradation), and 
for everyone to identify the underlying processes 
and drivers at relevant temporal and spatial scales 
to help create scientifically based guidance and 
tools that can be used by managers and regulators 
(e.g. Stutter et al. 2021). We suggest that greater 
collaboration of experts across disciplines (natural 
sciences, social sciences, policy, etc.), knowledge 
systems, organizations, and regions is key to 
incorporate the best available information and 
address deficiencies identified here (e.g. Cooke et 
al., 2022b).

Adaptive management will be key in 
determining the sensitivity and likelihood for any 
particular system to be in danger of approaching a 
tipping point, and socioeconomic interests will play 
a role in determining acceptable risk (Johnson and 
Ray, 2021). Once threshold values are established, 
then complementary restoration targets would help 
rectify systems that have fallen below the threshold, 
though multiple stressors (which are the norm in 
freshwater systems; Reid et al., 2019; Spears et al., 
2021) may have to be alleviated for restoration to 
be effective (Allan et al., 2013) and this may take 
centuries (Moreno-Mateos et al., 2020). Shoreline 
restoration incentive programs exist, such as 
revegetating, not mowing, or bioengineering where 
there are valid erosion issues, and so damaged areas 
can be restored, but simply restoring benchmark 
physical habitat or water quality parameters 
may fail to ensure ecological processes such as 
foodweb interactions are also restored (Albertson 
et al., 2018). As a society, we should embrace the 
response hierarchy of avoid > reduce > reverse 
when considering ecosystem degradation (Cowie 
et al., 2018).
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Conclusions
The loss of biotic integrity compared to 

reference conditions in human-altered freshwater 
ecosystems is ongoing. Practitioners and regulators 
play an important role in permitting activities and 
we all share in the desire to maintain functioning 
freshwater ecosystems (Twardek et al., 2021). 
Some patterns are already emerging, such as the 
large riparian buffer width necessary to protect 
both aquatic (30-100 m) and terrestrial (up to 1 
km) components (NPCA, 2022), and the evidence 
for adverse threshold effects occurring when 
just 3% of land in a watershed is developed 
(DeLuca et al., 2008; Maloney et al., 2012). By 
identifying best practices for our shorelines and 
identifying thresholds beyond which changes are 
disproportionately large, we can balance human 
desires with ecosystem function, which benefits 
everyone and everything in the end.
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